Pseudo-Medical Monitor Code TOFLaser STUFF
Jump to navigation
Jump to search
#define ThermalImager_INT_PIN 5 //low range of the sensor (this will be blue on the screen) #define MINTEMP 20 //high range of the sensor (this will be red on the screen) #define MAXTEMP 28 //the colors we will be using const uint16_t camColors[] = {0x480F, 0x400F, 0x400F, 0x400F, 0x4010, 0x3810, 0x3810, 0x3810, 0x3810, 0x3010, 0x3010, 0x3010, 0x2810, 0x2810, 0x2810, 0x2810, 0x2010, 0x2010, 0x2010, 0x1810, 0x1810, 0x1811, 0x1811, 0x1011, 0x1011, 0x1011, 0x0811, 0x0811, 0x0811, 0x0011, 0x0011, 0x0011, 0x0011, 0x0011, 0x0031, 0x0031, 0x0051, 0x0072, 0x0072, 0x0092, 0x00B2, 0x00B2, 0x00D2, 0x00F2, 0x00F2, 0x0112, 0x0132, 0x0152, 0x0152, 0x0172, 0x0192, 0x0192, 0x01B2, 0x01D2, 0x01F3, 0x01F3, 0x0213, 0x0233, 0x0253, 0x0253, 0x0273, 0x0293, 0x02B3, 0x02D3, 0x02D3, 0x02F3, 0x0313, 0x0333, 0x0333, 0x0353, 0x0373, 0x0394, 0x03B4, 0x03D4, 0x03D4, 0x03F4, 0x0414, 0x0434, 0x0454, 0x0474, 0x0474, 0x0494, 0x04B4, 0x04D4, 0x04F4, 0x0514, 0x0534, 0x0534, 0x0554, 0x0554, 0x0574, 0x0574, 0x0573, 0x0573, 0x0573, 0x0572, 0x0572, 0x0572, 0x0571, 0x0591, 0x0591, 0x0590, 0x0590, 0x058F, 0x058F, 0x058F, 0x058E, 0x05AE, 0x05AE, 0x05AD, 0x05AD, 0x05AD, 0x05AC, 0x05AC, 0x05AB, 0x05CB, 0x05CB, 0x05CA, 0x05CA, 0x05CA, 0x05C9, 0x05C9, 0x05C8, 0x05E8, 0x05E8, 0x05E7, 0x05E7, 0x05E6, 0x05E6, 0x05E6, 0x05E5, 0x05E5, 0x0604, 0x0604, 0x0604, 0x0603, 0x0603, 0x0602, 0x0602, 0x0601, 0x0621, 0x0621, 0x0620, 0x0620, 0x0620, 0x0620, 0x0E20, 0x0E20, 0x0E40, 0x1640, 0x1640, 0x1E40, 0x1E40, 0x2640, 0x2640, 0x2E40, 0x2E60, 0x3660, 0x3660, 0x3E60, 0x3E60, 0x3E60, 0x4660, 0x4660, 0x4E60, 0x4E80, 0x5680, 0x5680, 0x5E80, 0x5E80, 0x6680, 0x6680, 0x6E80, 0x6EA0, 0x76A0, 0x76A0, 0x7EA0, 0x7EA0, 0x86A0, 0x86A0, 0x8EA0, 0x8EC0, 0x96C0, 0x96C0, 0x9EC0, 0x9EC0, 0xA6C0, 0xAEC0, 0xAEC0, 0xB6E0, 0xB6E0, 0xBEE0, 0xBEE0, 0xC6E0, 0xC6E0, 0xCEE0, 0xCEE0, 0xD6E0, 0xD700, 0xDF00, 0xDEE0, 0xDEC0, 0xDEA0, 0xDE80, 0xDE80, 0xE660, 0xE640, 0xE620, 0xE600, 0xE5E0, 0xE5C0, 0xE5A0, 0xE580, 0xE560, 0xE540, 0xE520, 0xE500, 0xE4E0, 0xE4C0, 0xE4A0, 0xE480, 0xE460, 0xEC40, 0xEC20, 0xEC00, 0xEBE0, 0xEBC0, 0xEBA0, 0xEB80, 0xEB60, 0xEB40, 0xEB20, 0xEB00, 0xEAE0, 0xEAC0, 0xEAA0, 0xEA80, 0xEA60, 0xEA40, 0xF220, 0xF200, 0xF1E0, 0xF1C0, 0xF1A0, 0xF180, 0xF160, 0xF140, 0xF100, 0xF0E0, 0xF0C0, 0xF0A0, 0xF080, 0xF060, 0xF040, 0xF020, 0xF800, }; Adafruit_AMG88xx amg; unsigned long delayTime; #define ThermalImager_COLS 8 #define ThermalImager_ROWS 8 float pixels[ThermalImager_COLS * ThermalImager_ROWS]; bool ThermalImager_first_pass = true; #define INTERPOLATED_COLS 24 #define INTERPOLATED_ROWS 24 float get_point(float *p, uint8_t rows, uint8_t cols, int8_t x, int8_t y); void set_point(float *p, uint8_t rows, uint8_t cols, int8_t x, int8_t y, float f); void get_adjacents_1d(float *src, float *dest, uint8_t rows, uint8_t cols, int8_t x, int8_t y); void get_adjacents_2d(float *src, float *dest, uint8_t rows, uint8_t cols, int8_t x, int8_t y); float cubicInterpolate(float p[], float x); float bicubicInterpolate(float p[], float x, float y); void interpolate_image(float *src, uint8_t src_rows, uint8_t src_cols, float *dest, uint8_t dest_rows, uint8_t dest_cols); bool setup_ThermalImager() { if (!amg.begin()) { Serial.println("Could not find a valid ThermalImager88xx sensor, check wiring!"); return(false); } return(true); } void ThermalImager_Reset() { ThermalImager_first_pass = true; } void drawpixels(int x_offset, int y_offset, float *p, uint8_t rows, uint8_t cols, uint8_t block_Width, uint8_t block_Height) { int colorTemp; for (int y = 0; y < rows; y++) { for (int x = 0; x < cols; x++) { float val = get_point(p, rows, cols, x, y); if (val >= MAXTEMP) colorTemp = MAXTEMP; else if (val <= MINTEMP) colorTemp = MINTEMP; else colorTemp = val; uint8_t colorIndex = map(colorTemp, MINTEMP, MAXTEMP, 0, 255); colorIndex = constrain(colorIndex, 0, 255); //draw the pixels! uint16_t color; color = val * 2; DrawScreenBlock(x_offset + (block_Width * x), y_offset + (((rows-1) - y) * block_Height), block_Width, block_Height, camColors[colorIndex]); } } } int ThermalImager_x_offset = 44; int ThermalImager_y_offset = 0; int ThermalImager_x_width = 74; int ThermalImager_y_height = 74; void ThermalImager_Frame() { int ThermalImager_box_top = ThermalImager_y_offset; int ThermalImager_box_left = ThermalImager_x_offset; int ThermalImager_box_width = ThermalImager_x_width; int ThermalImager_box_height = ThermalImager_y_height; int block_size = 3; //read all the pixels amg.readPixels(pixels); float dest_2d[INTERPOLATED_ROWS * INTERPOLATED_COLS]; int32_t t = millis(); interpolate_image(pixels, ThermalImager_ROWS, ThermalImager_COLS, dest_2d, INTERPOLATED_ROWS, INTERPOLATED_COLS); if (ThermalImager_first_pass) { DrawScreenCompartment(ThermalImager_box_left, ThermalImager_box_top, ThermalImager_box_width, ThermalImager_box_height, COMMON_BLACK, COMMON_ORANGE); ThermalImager_first_pass = false; } drawpixels(ThermalImager_box_left+1,ThermalImager_box_top+1,dest_2d, INTERPOLATED_ROWS, INTERPOLATED_COLS, block_size, block_size); }