A Beginner’s Guide to
Field Programmable Gate Arrays

DL WORKSHORP |

Brief History of FPGAs

Progression of PROMs & PLDs
late 1980s

Naval Surface Warfare Department funded an experiment

1985 — Xilinx

co-founders Ross Freeman and Bernard Vonderschmitt
Invented the first commercially viable FPGA

early 1990s

Primarily used in telecommunications and networking

2000s

consumer, automotive, and industrial applications

PLD vs. Processers

Processer
- Instructions
- Interrupts

PLD
- “Physical” Hardware

FPGA Layout - CLBs

carry in

carry out

FPGA Layout — PIPs

The Language of Hardware

HDL — Hardware Descriptive Language
VERILOG
VHDL — VHSIC Hardware Descriptive Language

In this workshop, we will focus on VHDL.

Thinking Logically

When writing VHDL code you need to
ask the guestion

“How would this be done with logic gate”?”
Assume 1-bit addition

Diving into VHDL

—— ilmport 3td_logic from the IEEE library
library I1EEE;
use IEEE.s3td logic 1l164.all:

—— thiz is the entity
entity HALFADDER is
port |
in 3td logic:
in 3td logic:
5TM : out std logic:
CAERY : out std_logic):
end entity HALFADDER:

—— this is the architecture
architecture RTL of HALFADDE®
begin

SUM < xor B:

CRARRY < and B:
end architecture EIL:

Diving into VHDL

18 = S0% e (a-54
e o rA Air fram rhe PR rar
iport 3td logic from the IEEL library

L | b rary 11brarj TEEE;

use IEEE.std logic 1164.all;

Interpreter of 0

entity HALFADDER is

syntax -y

Il t in std logic:

- 12 ¢ in std logic;
E ntlty S : out std logic;

CARRY : out std_logic):
Define inputs and |
OUtpUtS -- thig is the architecture

Architecture o S

end architecture RIL;

How the inputs
affect the outputs

Libraries

IEEE.STD LOGIC_1164.ALL;

Entities

® A :In ;
e Signal Name
o Alphanumeric or ' _
o Must start with a letter
o No spaces or double * ’
o Not case sensitive

)

Entities

@I1 :in ;
e Direction
o In — Signals into the entity
o Out - Signals out of the entity
o Inout — Bidirectional Signals

o Buffer — Signals out of the entity and internally
referenced

Entities

11 :In

Architecture

Behavioral
Common Architecture
Algorithmic / Sequential

Dataflow

How data is transferred from signal to signal
and input to output

No sequential statements
Structural

Primary use
o connect entities in hierarchical design

Behavioral

Constants

Used for improved readability
Signals

Think of wires

Sequential Statements
o Assignment on next cycle

Variables
Assignments are immediate

Processes
contains sequential statements

Behavioral - Constants

constant Stop All CRC : 5TD LOGIC WVECTOR :="11000111"

object name objecttype object value

Behavioral - Signals

signal Custom Raw

object name object type

Behavioral - Variables

varliable CU5 Cur State

object name object type
Assignment Symbol

Behavioral - Processes

STATE i=
end process process name; 1 STATEl =

statements:
when STATEZ? =>
statements:

el=sif LDﬂiEEl Teat then
gtatements;

elze when others =
statements; Statements;

end if:

Netlist

Used by the compiler to map
Signal Names to Physical I/O

Our Platform

® Basys ™2 Spartan-3E FPGA Board
* 100K gate equivalent

Full Speed Platform Settable Clock

USB2 Port <+—— Flash Source
(JTAG and data transfers) 1 (config ROM) (25 /50 / 100 MHz2)

Data JTAG
20% port port l

e Xilinx Spartan3E-100 CP132
D'GILENT l'"aooooy ®

i ”..‘] ' szvono THEORY | e,
‘ : 2 i ‘\l}g .ﬂ !ﬁ ’g ,KF 'E %}) ' ' _, ’ '-’ 8 bit
7!.-1;]@:;:]"“‘»1 It g color
SSEEEEE:EEE
’ : ' . . A B c
- R— ,_, E I I
elefe]e) PS/2 VGA Port

/O Devices Port

Pmod Connectors

Image Source: digilentinc.com

First Design

BLINKY — Flash a LED at a desired rate

Components needed
Frequency Divider

First Design - BLINRKY

entity ClockDivide is
Port (
clk_in:in STD LOGIC,;
reset :in STD_LOGIC;
clk_out: out STD_LOGIC
);

end ClockDivide ;

First Design — BLINKY

architecture Behavioral of ClockDivide is
signal temp: STD_LOGIC,;
signal counter : integer range 0 to 124999 := 0O;

begin
frequency_divider: process (reset, clk_in)
begin
if (reset ='1") then

temp <="'0";
counter <= 0;
elsif rising_edge(clk_in) then
if (counter = 124999) then
temp <= NOT(temp);
counter <= 0;
else
counter <= counter + 1;
end if;
end if;
end process;
clk_out <=temp;
end Behavioral;

Second Design

Finite State Machine (FSM)
Used for data flow control

Components needed

Case statements (FSM)
o State Map
o State Outputs

Resources

VHDL Libraries - functions defined

Digilent Classroom

http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html
http://www.digilentinc.com/NavTop/Classroom.cfm

